COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF HEALTH SCIENCES			
ACADEMIC UNIT	DEPARTMENT OF BIOLOGICAL APPLICATIONS AND TECHNOLOGY			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	BEE608 SEMESTER 7 th			
COURSE TITLE	AQUATIC MICROBIAL ECOLOGY			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	G CREDITS	
			6	5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised general knowledge Skills Development			
PREREQUISITE COURSES:	Hydrobiology, Microbiology			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (in English)			
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/course/view.php?id=271			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The overall aim of the course is to gain an insight on issues regarding the biology (from genes to ecosystems) of aquatic microorganisms. Upon completion of the course students should be able to :

- outline the major traits of microbial life in aquatic environments

- discuss mechanisms that control microorganisms spread and microbial community composition and structure
- demonstrate an understanding of the ecology of aquatic microorganisms; the processes carried out by them; their contribution to ecosystem services

- describe fundamental approaches for the study of microorganisms and microbial processes in the aquatic environment

- formulate scientific hypotheses and design simple experiments for testing them

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

m

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalist
Adapting to new situations	Respect for the natural environment

Decision-making		
Working independently		
Team work		
Working in an international environment		
Working in an interdisciplinary environment		
Production of new research ideas		

Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking

Others...

Working independently Teamwork

Teamwork Respect for the natural environment and microbial diversity Design and conduct experiments Search for, analysis and synthesis of data and information, with the use of the necessary technology

(3) SYLLABUS

- Introduction to aquatic microbial ecology and brief history of environmental microbiology. Review of microbial life.
- Elements, biochemicals and structure of microbes
- The effect of nutrients and abiotic parameters on microbial ecophysiology
- Microbial community structure in aquatic environments
- "Omic" approaches for the study of aquatic microorganisms
- Microbial primary production. Degradation of organic matter and carbon flow in microbial food webs
- Microorganisms, climate, and climate change. The role of microbes in the biosphere.
- Microbial growth and grazing
- Ecology of viruses
- Processes in anoxic environments
- The attached-life style: Microbial communities in biofilms and microbial mats.
- Symbiotic relationships among microorganisms and between microorganisms and animals in aquatic habitats.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Classroom		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	University e-course platform Laboratory education Email: <u>aquatic.microorganisms@gmail.com</u> Webpage: <u>http://winobloggers.blogspot.gr/</u> Platform: <u>www.padlet.com</u> Platforms for data analysis (e.g. <u>https://usegalaxy.org/, https://blast.ncbi.nlm.nih.gov</u>)		
TEACHING METHODSThe manner and methods of teaching are described in detail.Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	ActivityLecturesLaboratory practiceand essay writingField workLaboratory essaysTutorialsEssayNon-directed study	Semester workload 26 25 12 19 13 28 45	
STUDENT PERFORMANCE EVALUATION	Total	163	

Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Multiple choice questionnaires, short-answer questions, open-ended questions 50% Laboratory work and essays/reports 25% Case-study 15% Class participation 10%

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Kirchman DL, Processes in Microbial Ecology. 2018, Oxford edt, ISBN-13: 9780198789406 (in Greek/English)
- Kormas K. Ecology of aquatic microorganisms, 2010, Gartaganis edt ISBN: 978-960-6859-14-4 (in greek)
- Ντούγιας Σ, Αϊβαζίδης Α, Μελίδης Π, 2012, ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΜΙΚΡΟΒΙΟΛΟΓΙΑ, ΕΜΒΡΥΟ ΕΜΠΟΡΙΚΗ ΕΚΔΟΤΙΚΗ ΜΟΝ. ΙΚΕ ISBN: 978-960-8002-66-1 (in Greek)
- Madigan T et al. Brock Biology of Microorganisms, 2014, Pearson edt ISBN-13: 978-0321897398

- Related academic journals:

- AQUATIC MICROBIAL ECOLOGY
- ENVIRONMENTAL MICROBIOLOGY
- MICROORGANISMS
- JOURNAL OF PLANKTON RESEARCH